Text Processing
The TextProcessing Gem enables text data preparation for machine learning in two different ways:
Follow along to see how to use the TextProcessing Gem. For an example set of Pipelines that uses this Gem to create a Generative AI Chatbot, see this guide.
1. Load web URLs and Extract Text
Given a column with web URLs, the Load web URLs
operation will scrape the content from each URL, and output the content as a binary format or as a human readable text format, depending on the operation type selected. The figure below shows the Load web URL and Extract Text
operation.
1a. Configure web scrape
Configure the (1) Operation Type to Load url (web scrape), and optionally extract the text. Specify which input (2) Column name contains the web urls. If the extract text
operation is selected, the text will be converted from binary to human readable format. When would you want to use the binary format? Binary web scraping is useful for downloading content including images or archived documents.
1b. Input
Parameter | Description | Required |
---|---|---|
Column name (string with urls) | string - the input column which contains the strings of web URLs | True |
1c. Output
Parameter | Description |
---|---|
Result content Load url (web scrape) | binary - the contents of each web page |
Result content Load url (web scrape) and extract text | string - the contents of each web page, converted from binary to human readable text |
1d. Generated Code
- Python
- Scala
def scrape_pages(spark: SparkSession, in0: DataFrame) -> DataFrame:
from pyspark.sql.functions import expr, array, struct
from spark_ai.webapps import WebUtils
WebUtils().register_udfs(spark)
return in0.withColumn("result_content", expr(f"web_scrape(loc)"))
[Not yet supported]
2. Split text data into equal chunks
Sometimes you'd like to send text data to a foundational model or store in a vector database, but the text is too long. For this case, just split the text into "chunks" of characters.
2a. Configure text splitting
Given a text input, the Split data
operation will separate the input column entries into chunks of specified size
.
Select the (1) Operation type to split text into equal chunks. Specify which input (2) Column name contains the relevant content. Specify an integer chunk (3) Size relevant for your generative AI use case.
2b. Input
Parameter | Description | Required |
---|---|---|
Column name | string - the text content which should be split into equal chunks | True |
Size | integer - the size of each chunk, number of characters. Example: 1000 | True |
2c. Output
Parameter | Description |
---|---|
result_chunks | array(string) - an array of text strings, each string representing one chunk of the larger text content |
2d. Generated code
- Python
- Scala
def Chunkify(spark: SparkSession, web_bronze_content: DataFrame) -> DataFrame:
from pyspark.sql.functions import expr, array, struct
from spark_ai.files.text import FileTextUtils
FileTextUtils().register_udfs(spark)
return web_bronze_content.withColumn("result_chunks", expr(f"text_split_into_chunks(content, 1000)"))
[Not yet supported]
FAQ
How does this Gem fit into the bigger picture of building a generative AI application?
For an example set of Pipelines that uses this Gem to create a Generative AI Chatbot, see this guide. Feel free to reach out and explore your use case with us.
Troubleshooting
Select a chunk size according to the limitations of your vector database index.