Skip to main content

Avro

The Avro file type:

  • Is a row-based, open-source data serialization system.
  • Supports schema evolution, which allows schemas to evolve over time without breaking compatibility.
  • Stores the data in a binary format, which makes the data compact and efficient.
  • Usually appears in big data environments, data streaming applications, and scenarios where data serialization and storage are important.

Parameters

ParameterTabDescription
LocationLocationFile path to read from or write to the Avro file.
SchemaPropertiesSchema to apply on the loaded data.
In the Source gem, you can define or edit the schema visually or in JSON code.
In the Target gem, you can view the schema visually or as JSON code.

Source

The Source gem reads data from Avro files and allows you to optionally specify the following additional properties.

Source properties

Property nameDescriptionDefault
DescriptionDescription of your dataset.None
Use user-defined schemaWhether to use the schema you define.false
Ignore files without .avro extension while readingDEPRECATED. Whether to load files without the .avro extension.
This parameter will be removed in a future release.
To filter file names, use the Path Glob Filter property.
true
Recursive File LookupWhether to recursively load files and disable partition inferring. If the data source explicitly specifies the partitionSpec when therecursiveFileLookup is true, the Source gem throws an exception.false
Path Global FilterGlob pattern to only include files with paths matching the pattern. The syntax follows GlobFilter and does not change the behavior of partition discovery.None
Modified BeforeTimestamp to only include files with modification times occurring before the time you specify. The timestamp must be in the following format: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)None
Modified AfterTimestamp to only include files with modification times occurring after the time you specify. The timestamp must be in the following format: YYYY-MM-DDTHH:mm:ss (e.g. 2020-06-01T13:00:00)None
Avro SchemaAdditional schema a user provides in JSON format. To learn more, see Schema evolution.None

Schema evolution

When reading an Avro file, you can set the Avro Schema parameter to a newer evolved schema, which is compatible but different from the schema written to storage. The resulting DataFrame follows the newer evolved schema.

For example, if you set an evolved schema to contain one additional column with a default value, the resulting DataFrame contains the new column too.

Example

Schema used in example above

Avro schema used

Generated Code

tip

To see the generated source code of your project, switch to the Code view in the project header.

def read_avro(spark: SparkSession) -> DataFrame:
return spark.read\
.format("avro")\
.option("ignoreExtension", True)\
.option(
"avroSchema",
"{\"type\":\"record\",\"name\":\"Person\",\"fields\":[{\"name\":\"firstname\",\"type\":\"string\"},{\"name\":\"middlename\",\"type\":\"string\"},{\"name\":\"lastname\",\"type\":\"string\"},{\"name\":\"dob_year\",\"type\":\"int\"},{\"name\":\"dob_month\",\"type\":\"int\"},{\"name\":\"gender\",\"type\":\"string\"},{\"name\":\"salary\",\"type\":\"int\"}]}"
)\
.load("dbfs:/FileStore/Users/abhinav/avro/test.avro")

Target

The Target gem writes data to Avro files and allows you to optionally specify the following additional properties.

Target properties

Property nameDescriptionDefault
DescriptionDescription of your dataset.None
Avro SchemaAdditional schema a user provides in JSON format. You can set this parameter if the expected output Avro schema doesn't match the schema Spark converts.
For example, the expected schema of a column is an enum type, instead of a string type in the default converted schema.
None
Write ModeHow to handle existing data. For a list of the possible values, see Supported write modes.error
CompressionCompression codec when writing to the Avro file.
The Avro file supports the following codecs: uncompressed, snappy, deflate, bzip2, and xz.
This defaults to the value of the spark.sql.avro.compression.codec parameter.
snappy
Partition ColumnsList of columns to partition the Avro files by.None
Record NameTop level record name in the result.topLevelRecord
Record NamespaceRecord namespace in the result."" (empty string)

Supported write modes

Write modeDescription
errorIf the data already exists, throw an exception.
overwriteIf the data already exists, overwrite the data with the contents of the DataFrame.
appendIf the data already exists, append the contents of the DataFrame.
ignoreIf the data already exists, do nothing with the contents of the DataFrame.
This is similar to the CREATE TABLE IF NOT EXISTS clause in SQL.

Example

Generated Code

tip

To see the generated source code of your project, switch to the Code view in the project header.

def write_avro(spark: SparkSession, in0: DataFrame):
in0.write\
.format("avro")\
.mode("overwrite")\
.partitionBy("dob_year","dob_month")\
.save("dbfs:/data/test_output.avro")